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Abstract. The elastic and inelastic scattering of electrons by a standing wave of intense 
and coherent light are investigated by means of the Helmholtz-Kirchhoff diffraction theory. 
This approach has many features in common with the theory of Raman and Nath on the 
Debye-Sears effect. The time-averaged theories, used previously for the description of 
Kapitza-Dirac scattering, are shown to be inadequate. 

1. Introduction 

With the advent of powerful lasers the theoretical and experimental investigation of the 
elastic scattering of electrons by a standing light wave, known as the Kapitza-Dirac 
effect (Kapitza and Dirac 1933), has again become of interest (Schwarz 1973). The paper 
of Schwarz contains a critical survey of the available experimental evidence for the 
existence of this effect. In three recent communications (Ehlotzky 1974, 1975, Ehlotzky 
and Leubner 1974) we have shown that, despite its apparent simplicity, the theory of 
phase gratings in the Fraunhofer approximation of the Helmholtz-Kirchhoff diffraction 
theory may be successfully applied to the investigation of the above problem. This can 
be done after an appropriate expression has been derived for the refractive index of 
electrons traversing a standing wave of intense and coherent light. The resultant theory, 
which is extended in the present paper to the inclusion of inelastic scattering phenomena 
into our discussion, has many similarities with the corresponding investigations of 
Raman and Nath (1936) on the Debye-Sears effect (Debye and Sears 1932). The latter 
theory has been astonishingly successful in the proper interpretation of the experimental 
data, in particular of the Bar interference phenomena (Bar 1933), of which analogues 
will also be met in our present considerations. 

2. Quasi-stationary theory of electraa scattering by a standing light wave 

For what follows we refer readers to our previous investigations (Ehlotzky 1974, 1975, 
Ehlotzky and Leubner 1974), in particular concerning notation and justification of 
various approximations. In accordance with Raman and Nath (1936), we shall start 
with the derivation of an approximate expression for the index of refraction of electrons 
passing a standing light wave. As has been done in most previous investigations (Schwarz 
1973, Ehlotzky 1974, 1975, Ehlotzky and Leubner 1974), we shall describe the standing 
light wave by a classical monochromatic electromagnetic background field of frequency 
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w and wavenumber k = 27r/L, having its direction of propagation along the < axis and 
its vector c of linear polarization perpendicular to the plane of scattering. Furthermore, 
we shall assume that the motion of the electrons in the standing light wave may be 
described by the non-relativistic Schriidinger equation, since, after all, only sufficiently 
slowly moving electrons will lead to measurably large, though actually still very small, 
scattering angles. Hence, the electron beam may be supposed to impinge on the stand- 
ing light wave close to the normal on the axis <. Taking this normal as the z direction 
the electrons are incident at small angles 8, with respect to this axis and leave the stand- 
ing wave at similarly small angles 8. Consequently, putting h = c = 1, the Schrodinger 
equation will read 

where, as usual, we have taken the radiation gauge with V A  = 0 and the term A .  V has 
dropped out on account of our choice of the scattering plane. At present, by the way, 
it appears that the choice of an arbitrary scattering plane would, on account of the term 
A . V ,  only lead to unnecessary additional complications?. The vector potential A of 
the standing light wave is given by (Ehlotzky and Leubner 1974) 

A = 2A0c COS wt COS k< (2) 
assuming 100 % reflection of the ingoing laser beam at a plane mirror placed perpendicu- 
lar to the direction of incidence of the laser light. 

Inserting (2) into (1) we may conveniently write 

( V 2  + 2im2, - e 2 A i ) Y  = {e2Ai[cos 2wt + cos 2k<( 1 + cos 2 m r ) ] ] Y  (3) 

and we shall first solve the truncated equation, which is obtained by putting the left- 
hand side equal to zero. This yields Y o  = exp[-i(E,t-K. x)] where we assume the 
ingoing electrons to have kinetic energy E ,  = p32m and wavenumber K O  = 24A0 so 
that K = K,n, is the wavenumber in the averaged field, the refractive index of which 
is given by no = [l - ( eA , /K , )2 ]”2 .  For the solution of the exact equation (3) we shall 
now try the corresponding ansatz \y = u(x, t )  exp( - iE,t) and since in all relevant 
experiments we shall always have hw << E ,  << mc2 it is reasonable to assume u(x,  t )  to 
be a comparatively slowly varying function of time so that we will be permitted to make 
the following quasi-stationary approximation ia,Y 2 E,” by means of which we get 
from (3) 

( V 2  + K2n2((, t ) )u(x,  t) = 0 (4) 
and the refractive index of our grating, which is represented by the standing light wave, 
will be given by 

( 5 )  n ( ( ,  t )  = { 1 - (e&/K)2[cos 2wt + COS 2k(( 1 +cos 2wt)l) l I 2 .  

Similarly, since k << K ,  we may also assume u(x,  t )  to be slowly varying in x, from which 
we obtain the approximate solution of (3) and (4) in the form 

(6)  Y(X, t )  1 exp[ - i(E,t - n(4, t ) K .  x ) ] .  

t Our choice of the scattering plane has been suggested to us by the work of Gush and Gush (1971). Further- 
more, for the induced scattering processes considered here any momentum transfer will always be in the 
direction and therefore perpendicular to c. 
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But, as we have learned in our earlier investigations (Ehlotzky and Leubner 1974), this 
approximation is consistent only if we require k d ( 2 ~ / P ) ~  << 1 from which it follows 
necessarily that e A o / K  = (2/n0)(p//?) << 1. Here we have introduced the diameter d of the 
laser beam, the electron velocity p measured in units of c and the Kibble parameter p t .  
Hence we may use the further approximations no 1, K 2 KO and 

n(<, t )  = 1 - 2(p/B)’[cos 2wt + cos 2k<( 1 +cos 2wt)l (7) 

so that finally our wavefunction (6) assumes the form 

“(1, t )  = exp[ - i(Eot - K O  . I)] exp{ - ~ ~ K , Z ( ~ / ~ ) ~ [ C O S  20t  + cos 2k5( 1 +cos 2wt)l). (8) 

In the second exponential of this expression we have made use of our assumption that 
the electron beam impinges on the standing light wave very close to the z direction. 

According to our previous investigations (Ehlotzky and Leubner 1974) we may 
neglect all sorts of ‘edge effects’ and consequently we may assume the elec‘tron beam to 
enter and to leave the standing light wave fairly abruptly. If, therefore, the electron 
wave (8) has traversed the distance z = d in the standing light wave, we may define 
a time-dependent transmission function D(t, t )  of our grating (Born and Wolf 1964) of 
length D = N1/2, corresponding to the diameter of the electron beam (Ehlotzky and 
Leubner 1974), where N is a very large positive and integral number representing, so to 
speak, the number of bars of the grid. Thus we have 

D ( t ,  t )  = exp{ - ip[cos 2wt + cos 2k5(1 +cos 2wt)l) (9) 

where the factor exp( - iEot) has only been retained for later convenience of interpreta- 
tion. p = 2K0d(p/B)’ is the most important parameter of our theory and it can be quite 
easily shown (Fedorov 1967, Gush and Gush 1971) that p = (47Wo/COZ)IoT where I o  is 
the intensity of the laser beam and T the time taken for the electrons to pass through 
the standing light wave. Since, however, we had to assume for the validity of the above 
approximate transmission function that kd(2plB)’ << 1, the condition 

p = 2K0d(p/P)’ << K0/2k = 1/2A0 

follows immediately. But, for electron energies of about 100eV and for laser beam 
wavelengths 1 = 10-4cm usually considered, we shall certainly have 1/2A0 >> 1 .  
Consequently, in our discussions later on, we will be permitted to consider small as 
well as intermediate values of p. This corresponds, according to our above conditions, 
to still relatively small values of the Kibble parameter, namely p = being equiva- 
lent to a power output of the laser of about lo7 W cm-’ (Schwarz 1973, Sarachik and 
Schappert 1970). 

Furthermore, we can infer from (9) that in our approximation the standing light wave 
acts on the transmitted electrons as a phase grating, which is characterized by 
ID(<, t)l = 1. This grating is periodic in space with period A/2 and in time with period 
t/2, where T = 2n/w. It is important to realize in this connection that the periodic 
structure of D(4, t )  will be preserved, even if a more precise solution of the Schrodinger 
equation (3) can be obthined, from which the dissipative character of the inelastic 
scattering components, concomitant with the elastic Kapitza-Dirac effect, becomes 
apparent. In that case we shall obtain a more general transmission function 
D(<, t )  = A(<,  t )  exp(i@(<, t ) ) ,  where A and are periodic in < and t with the above 

t This parameter is defined by p z  = (eAO/2m)’ = (2n /m) ( roIo /02) ,  where r ,  = e2 /m and I ,  = 0 2 A 3 8 n  
using h = c = 1. 
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periods. Hence the principal structure of the diffraction pattern, which we shall discuss 
below, will not be changed in going to higher laser beam intensities than those permitted 
within the framework of our approximation. 

Introducing (9) into the Fraunhofer diffraction integral (Born and Wolf 1964), for 
which the conditions of validity are certainly fulfilled (Ehlotzky and Leubner 1974, 
Ehlotzky 1975), we obtain for the diffracted electron wave 

'€",(a, t )  = C exp[ - i(E,t + p COS 2 u t ) l  

x JI exp( - i[K,(a - a,)< + p( 1 +cos 2 0 r )  cos 2k t -J )  d t  (10) 

where ci = sin 8 and a, = -sin 8,. Since, however, cos 2 k t  has period AI2 = z / k  we 
may put 4 = to + vn/k and therefore (10) reduces to 

sin Ny 
sin y 

YD(a, t )  = exp[-i(N- l)y]- exp[ - i(E,t+ p cos 2~t)]'€',,~(ci, t )  

where 

exp{ - i[K,(a - a,)(, + p (  1 +cos 2 0 t )  cos 2k< , ] )  d t o  

+rx 
i(? + sn) sin(y + 

= $A J,[p( 1 + cos 2 w t ) ] (  - i)" e- 
S = - m  y+sn 

The latter expression has been obtained by realizing that the exponential under the 
integral sign represents the generating function of Bessel functions. We have introduced 
the abbreviation y = K,(a - a,)L/4. 

From ( 1 1 )  we conclude immediately that the principal maxima of the Fraunhofer 
diffraction pattern are determined by (Ehlotzky and Leubner 1974, Ehlotzky 1975, 
Born and Wolf 1964) 

y = nn, 

po(sin 8 +sin 8,) = 2nhk. 

n = 0, + 1 ,  + 2 , . . .  
or (13) 

As we have done in our previous work (Ehlotzky and Leubner 1974, Ehlotzky 1974, 
1979, we shall confine ourselves in the following primarily to these diffraction maxima 
and, with (13) being fulfilled, we conclude at once from (12) that the only surviving term 
of the infinite sum over s will be the one for which s = - n. Consequently, if we Fourier- 
decompose this term with respect to time t ,  we get 

",,(a,,, t )  = (CNA/2)( - 1)"'i" exp[ - i(E,t + p cos 2wt)]J,[p(  1 +cos 2wt) l  

fn,v(p) = (-')" jo2' exp[i(v4-p cos +)]J,[p(l +cos 4)] d 4  

= (2.1-2 jOzn jO2' exp(iv4 + in$) 

x exp[ - ip(cos 4 + cos $ +cos 4 cos $ ) I  d 4  d$ 
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and in the second part of this equation use has been made of the integral representation 
of J,. 

Hence, according to (14), the electron wave scattered into the principal maximum 
of index n is composed of an infinite sum of incoherent components t,bD,v(an, t )  each 
corresponding to the scattering of electrons by the standing light wave on account of 
the induced emission or absorption of a net number of 21vl photons into or from the 
standing laser field respectively and of simultaneous momentum change of amount (13). 
Obviously, the term v = 0 corresponds to elastic electron scattering and will therefore 
describe the ordinary Kapitza-Dirac effect, which has been discussed exclusively in 
earlier investigations (Kapitza and Dirac 1933, Schwarz 1973, Ehlotzky and Leubner 
1974, Ehlotzky 1975). Our more general result (14) and (15) is analogous to the findings 
of Raman and Nath (1936) on the Debye-Sears effect (Debye and Sears 1932). 

If we switch off the standing light wave, we easily conclude from the diffraction 
integral (10) that the amplitude of the ingoing electron wave is given by 
Yo@) = (CNA/2)  exp( - iEot) (Ehlotzky and Leubner 1974) and consequently we obtain 
for the probability of electron scattering into the nth diffraction maximum 
IYD(~,, t)12/lYo(t)12. Since, however, the time of observation is usually much larger 
than the period of the standing light wave we get for this probability after averaging 
over t 

as can be easily inferred from (14). The P,,,(p) in (16) are the probabilities of elastic and 
inelastic electron scattering into the diffraction maxima of order n with induced emission 
or absorption of 21vl quanta from the standing light wave. 

The remainder of our considerations will therefore be devoted to the evaluation of 
the probabilities P,,,(p) from (15) and to the discussion of their specific properties, 
which imply some important conclusions quite different from previous investigations. 

Let us start with the enumeration of the general properties of the P,Jp) .  First of 
all we infer from the definition (15) of the Fourier amplitudes f,,,(p) that 

(17) 

Secondly, if we evaluate the total diffraction probability P,(p) for the maximum of order 
n from (15) and (16), thereby using the identity (Gel'fand and Shilov 1964) 

Pi&) = p,, - ,(PI = p-  ,,"(PI = P-n, - v(P) = PV,,(P). 

+ a  + m  

71 e 6[4'-(4+27101 e - i v ( 4 - @ ' )  = 2 

we get immediately 

and therefore the total probability of scattering into any of the infinitely many diffraction 
maxima will be given by 

+ m  

P = P,(p) = 1 
,=-a 

on account of the completeness relation of the Bessel functions. Hence the probabilities 
P,,,(p) fulfil the conditions of normalization and conservation of probability in our 
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scattering problem. This result also shows that our approximation is consistent with 
the assumption of no electrons being reflected by the grating and of all scattering taking 
place into the principal maxima of the Fraunhofer diffraction pattern (Ehlotzky 1974). 

If we exploit the periodicity of the integrand in (15), we can rewritef&) as 

f,,,(p) = C2 exp(ip) [' d$ [' d$ cos v$ cos n$ exp(-4ip COS' 4/2 cos' $/2) .  (20) 
. o  9 0  

Expanding the exponential under the integral sign and integrating term by term we 
obtain (Grobner and Hofreiter 1961, part 2, p 110, integral 14(b)) 

By virtue of (17) it is no restriction to assume n 2 v. The scattering probabilities 
Pn,,(p) = If,,,(p)12 have been evaluated numerically from (21) for n = 0, 1,2,3 and 
v = 0, 1 .  

The total probability of scattering (elastic and inelastic) into the nth diffraction 
maximum, Pn(p), is obtained from (18) by replacing J,' by its power series (Abramowitz 
and Stegun 1970, p 360, equation (9.1.14)) and subsequent term by term integration to 
yield 

oc 

P,(p) = 2 ( -  l)k(p/4)2"c2k{(4n+4k)!/(2n+k)![(n+k)!]2(2n+2k)!}. (22) 

These probabilities have been calculated for n = 0, 1,2 ,3  and are shown together 
with the probabilities P&) in figure 1 .  For comparison we also give the functions 
p,(p) = J;(p), ie the scattering probabilities of the time-averaged theory (Schwarz 1973, 
Ehlotzky and Leubner 1974, Ehlotzky 1974, 1975, Fedorov 1967). 

k = O  

0 

P 

0 

2 4 6 

4 t  c /'\, p,(Pl 
! I \  

Figure 1. (a), (b), (c) and (d) show the probabilities PJp) of elastic and inelastic electron 
scattering and the corresponding total probabilities Pn(p) for n = 0,1,2 and 3 respectively. 
The broken lines, for comparison, represent the scattering probabilities P.(p) of the time- 
averaged theory. 
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Summarizing, the most important conclusions that can be drawn from our above quasi- 
stationary theory of the elastic and inelastic scattering of electrons by a standing wave of 
intense and coherent light are the following. 

(i) Contrary to the plausibility arguments presented in all previous investigations 
of this problem (Schwarz 1973, Ehlotzky and Leubner 1974, Ehlotzky 1974, 1975, 
Fedorov 1967, Gush and Gush 1971), the time-averaged theory only leads to fairly 
correct values of the scattering probabilities for sufficiently small values of p (ie p << 1). 
For increasing p, however, this theory by far overestimates the scattering probabilities 
for the diffraction maxima n > 0 as regards their order of magnitude as well as their 
oscillatory behaviour. The diagrams of figure 1 also tell us that 50% and more of the 
total diffraction probabilities P,(p) is due to inelastic electron scattering and for interme- 
diate values of p only the lowest-order scattering probabilities P&) have appreciable 
values, This confirms our assumptions leading to our quasi-stationary approximation 
for it shows that the Fourier coefficients f,,, in the expansion (14), corresponding to 
‘slow’ oscillations with time, dominate. It is convenient for order of magnitude estimates 
to write the parameter p in the form p = (4WoC/h)(loT/w2) = 10261,T/w2, using cgs 
units (Ehlotzky and Leubner 1974, Fedorov 1967, Gush and Gush 1971). Taking for 
example I, = lo7 W cm-2, T = 2 x lO-’s and w = 2 x 1015 s - l  (Schwarz 1973), we 
get p = 5 .  

(ii) In our quasi-stationary solution of the scattering problem, in which also the 
p . A part of the electromagnetic interaction has been eliminated by conveniently 
choosing the plane of scattering perpendicular to the vector of linear polarization of the 
standing light wave, the general features of the Fraunhofer diffraction pattern remain the 
same for the elastic as well as inelastic processes, if compared with the simplified time- 
averaged theory discussed earlier (Schwarz 1973, Ehlotzky and Leubner 1974, Ehlotzky 
1974, 1975, Fedorov 1967). 

(iii) For every order n of the diffraction pattern the scattered wave YD(tl,, t )  is, 
according to (14), the incoherent sum of waves yD,,(tl,, t )  corresponding to electrons of 
energy EO+2wv. Hence, for a particular diffraction maximum n the total scattering 
probability P,(p) will be given by (16) and (18). On the other hand, for fixed value of the 
index v all diffracted waves YD,,(~,, t )  are coherent to one another and may therefore 
interfere. This possibility of interference of the, in general, inelastically scattered elec- 
trons has its analogue in the diffraction of light by a standing wave of ultrasound. Here 
the corresponding interference phenomena have been predicted many years ago by 
Raman and Nath (1935,1936) and have been observed by Bar (1933). The above proper- 
ties of interference show that, even in the case of inelastic electron scattering, the stand- 
ing light wave preserves, at least within the framework of our approximations, its 
character as a phase grating thus making it still feasible to observe Kapitza-Dirac 
scattering (now including inelastic effects) by means of the phase contrast method, as 
has been- suggested by us earlier (Ehlotzky and Leubner 1974). 

(iv) Since for every diffraction maximum of order n we shall have the same energy 
spectrum of scattered electrons E0+2vw, one should be able to observe this energy 
splitting in close to the forward direction, even if the diffraction pattern itself can not be 
resolved. The only condition to be fulfilled for that purpose is AE, << 20, ie high 
monochromaticity of the electron beam, which is used for the experiment. For example, 
if w is of the order of a few electron volts AE,  will have to be about 0.1 eV. 
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(v) The general forms of the refractive index n(4, t )  of the standing light wave and of 
the wavefunction Y(x, t )  of electrons traversing this wave, which we have derived in ( 5 )  
and (6), show that at the antinodes of our grating the standing light wave may become 
totally reflective for electrons as soon as (eAo/K)* 2 1, even if time-dependent effects 
are permitted to take place. Consequently, for sufficiently high laser beam intensities 
backward scattering of electrons should be observed in such experiments. This effect, 
therefore, is definitely not the result of the time-averaging approximation used earlier 
(Ehlotzky 1975). The detailed evaluation of the reflection probabilities for the standing 
light wave acting as a reflection grating is a rather complicated matter, for at high laser 
beam intensities our approximations, on which our present calculations are based, will 
break down and much more exact solutions of the Schrodinger equation (3) will be 
required. 
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